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ROSENBROCK-NYSTROM INTEGRATORS FOR SSODE OF
MULTIBODY DYNAMICS *

A. SANDU', D. NEGRUT?, E. J. HAUG §, F. A. POTRAY, AND C. SANDU |

Abstract. When performing dynamic analysis of a constrained mechanical system, a set of
index 3 Differential-Algebraic Equations (DAE) describes the time evolution of the system model.
The paper presents a state-space based method for the numerical solution of the resulting DAE. A
subset of so called independent generalized coordinates, equal in number to the number of degrees of
freedom of the mechanical system, is used to express the time evolution of the mechanical system. The
second order state-space ordinary differential equations (SSODE) that describe the time variation
of independent coordinates are numerically integrated using a Rosenbrock type formula. For stiff
mechanical systems, the proposed algorithm is shown to significantly reduce simulation times when
compared to state of the art existent algorithms. The better efficiency is due to the use of an L-stable
integrator and a rigorous and general approach to providing analytical derivatives required by it.

Key words. Multibody dynamics, differential-algebraic equations, state space form, Rosenbrock
methods.

AMS subject classifications. 65L06

1. Introduction. In this paper, the state of a multibody system at the position
level is represented by an array q = [q1,- - -, qn]T of generalized coordinates. The ve-
locity of the system is described by the array of generalized velocities q = [q1, . - ., q'n]T.
Given the quantities q and q, the position and velocity of each body in the system is
uniquely determined.

There is a multitude of ways in which the set of generalized coordinates and velocities
can be selected [5, 9, 6]. The generalized coordinates used in this paper are Cartesian
coordinates for position and Euler parameters for orientation of body centroidal refer-
ence frames. Thus, for each body ¢ the position of the body is described by the vector

pi = [zi, ¥i, z,-]T, while the orientation is given by the array of Euler parameters [9],
T . . .
e; = [eio, €i1, €i2, €3] . Consequently, for a mechanical system containing nb bodies,
T
(1) a=[p{ e ... py ey] €R™

When compared with the alternative of using a set of relative generalized coordinates,
the coordinates considered are convenient because of the rather complex formalism
employed to obtain the Jacobian information required for implicit integration. Note
that since the algorithm proposed in this paper is based on a Rosenbrock formula, it
becomes essential to provide accurate integration Jacobians [7].

In any constrained mechanical system, joints connecting bodies restrict their rel-
ative motion and impose constraints on the generalized coordinates. To simplify the
presentation, only holonomic and scleronomic constraints are considered. Kinematic
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constraints are then formulated as algebraic expressions involving generalized coordi-
nates,

(2a) ®(q) = ®1(q) ... ®m(q) ]T =0

where m is the total number of constraint equations that must be satisfied by the
generalized coordinates throughout the simulation. It is assumed here that the m
constraint equations are independent. The number of degrees of freedom ndof is
thus the difference between the number of generalized coordinates and the number of
constraints ndof = n —m.

Differentiating Eq.(2a) with respect to time leads to the velocity kinematic constraint
equation

where the over dot denotes differentiation with respect to time and the subscript
denotes partial differentiation, ®q = 0 (®1---Py,) /0 (¢1---gn)- The acceleration
kinematic constraint equations are obtained by differentiating Eq.(2b) with respect
to time,

(2¢) D4(q) = —(®q(@)q)_ q=7(q,q) -

q
Equations (2a)—(2c) characterize the admissible motion of the mechanical system.

The state of the mechanical system changes in time under the effect of applied
forces. The time evolution of the system is governed by the Lagrange multiplier form
of the constrained equations of motion [9],

(2d) M(a)d + @4 (@) A = Q*(a, 4, t)

where M(q) € R™*™ is the symmetric system mass matrix, A € R™ is the array of
Lagrange multipliers that account for workless constraint forces, and Q4(q, ¢,t) € R™
represents the generalized applied force that may depend on the generalized coordi-
nates, their first time derivatives, and time.

Equations (2a)—(2d) comprise a system of differential-algebraic equations (DAE).
It is known that differential-algebraic equations are not ordinary differential equations
[13]. Analytical solutions of Egs.(2a) and (2d) automatically satisfy Eqgs.(2b) and (2c),
but this is no longer true for numerical solutions. In general, the task of obtaining
a numerical solution of the DAE of Egs.(2a)—(2d) is substantially more difficult and
prone to intense numerical computation than that of solving ordinary differential
equations (ODE). For a review of the literature on numerical integration methods for
solution of the DAE of multibody dynamics the reader is referred to [14, 2].

Equations (2¢)—(2d) are expressed in matrix form as

b [ ]

—~

Equations (2a), (2b), and (3) must be satisfied by the numerical solution to be
constructed. This set of index 3 DAE [7] is first reduced to a set of state-space ordinary
differential equations (SSODE), following the approach proposed by [19]. First an
independent subset of the generalized coordinates q is determined. The partitioning of
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the generalized coordinate vector q € R™ into independent and dependent coordinate
vectors v € R"%f and u € R*—"d0/

(4)v[i] = alv(i)] , 1 <i<ndof, and ulj]=qlu()], 1<j<n-ndof,
is done such that the sub-Jacobian of the constraints with respect to u is nonsingular

(%) det (®u(q)) #0 .

Such a partition can be found starting with a set of consistent generalized coordinates
qo; i-e., which satisfy Eq.(2a). The constraint Jacobian matrix ®4 is evaluated and
numerically factored, using the Gauss-Jordan algorithm with full pivoting [3],

(6) ®q(qo) = (Gauss — Jordan) = [®u(qo0)|®v(q0)]

Column pivoting during Gauss-Jordan factorization is done such that Eq.(5) holds
at all times. Likewise, the functions v and p introduced in Eq.(4) are defined as a
byproduct of the Gauss-Jordan factorization. Thus, if v : {1,2,...,ndof} = Sindep
and p: {1,2,...,m} — Sgep the sets Singep and Sgep are such that Singep U Sgep =
{1,2,...,n} and Sipgep N Sqep = 0. This generalized coordinate partitioning strategy
is possible as long as the constraint equations of Eq.(2a) are independent [9]; i.e., as
long as the constraint Jacobian ®4 has full row rank.

Based on this partitioning, Egs.(2a)—(2c) can be rewritten in the associated par-
titioned form [9]

(7a) MY (u, v)¥ + M (u, v)ii + @7 (1, v)A = Q"(u, v, ,¥)
(7b) M™ (u, v)¥ + M"(u, v)ii + @1 (0, V)X = Q*(u,v, 1, V)
(7c) ®(u,v) =0

(7d) ®,(u,v)a+ &, (u,v)V =0

(7e) B, (u, V)il + By (u, V)V = 7(u, v, 11, V)

The partitioning of Egs.(7a)—(7e) is induced by the partitioning of the generalized
coordinates in Eq.(4). For example, MV"[i, j] = M[v (i), u(§)], for 1 < i < ndof,1 <
j <n —ndof, while Q"[j] = Q[u(j)], for 1 < j <n — ndof. Likewise, a partial with
respect to the dependent set of coordinates u is obtained by gathering the columns
(1) through u(n — ndof) of the derivative with respect to the generalized coordi-
nates q. The remaining columns provide the partial with respect to the independent
coordinates v.

The condition of Eq.(5) and the implicit function theorem [4] guarantee that
Eq.(7c) can be solved for u as a function of v,

(8) u=g(v)

where the function g(v) has as many continuous derivatives as does the constraint
function ®(q). For all but the most simple mechanical systems, an analytical ex-
pression for the function g(v) can not be determined. However, for any consistent
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configuration qo = (ug, Vo), a value @ can be found for each v in a small enough
neighborhood of vo. The value @ is computed by keeping v = ¥ in Eq.(7c) constant
and solving for u = u. Because of the form the joint constraint equations assume
when used in conjunction with a Cartesian representation, u is always the solution of
a system of non-linear equations.

The system of DAE in Eqs.(7a), (7b), and (7e) is reduced to an SSODE, through
a sequence of steps that use information provided by Eqs.(7c) and (7d). First, since
the coefficient matrix of 01 in Eq.(7d) is nonsingular, 11 can be determined as a function
of v and v, where Eq.(8) is used to eliminate explicit dependence on u. Next, Eq.(7e)
uniquely determines i as a function of v, v, and v, where results from Eqgs.(7d) and
(8) are substituted. Since the coefficient matrix of A in Eq.(7b) is nonsingular, A can
be determined uniquely as a function of v, v, and v, using previously derived results.
Finally, each of the preceding results is substituted into Eq.(7a) to obtain the SSODE
in the independent generalized coordinates v [19],

9) M(v) ¥ = Q(t,v,V)

where

(10a) M = MW -M"8,'®, — 873, T [M" - M™3,'3,] ,
10b) Q = Q' -M"s;l7r—dTH T [Q - MM 7]

The SSODE (9) is well defined, due to the following property [9].
LEMMA 1.1. For anyv € R"7 | the matriz M (v) of Eq.(10a) is positive definite.

Proof. Given v € R™°f the position configuration of the mechanical system is
uniquely determined with all remaining dependent coordinates provided by Eq.(8).
For any v € R"%/ define 1 = —®;(u,v)®, (u,v)V. Then the pair ¥, i1 determines
a consistent set of generalized velocities, as it satisfies the velocity kinematic constraint
equations of Eq.(7d). If the generalized velocity corresponding to the pair v # 0, 1
is denoted by ¢, the kinetic energy K = 1/24TM¢ > 0. Since ¢"M¢g = vITMv, it
follows that vTMv > 0. 0

2. Rosenbrock integration formulas for second order systems. For the
Initial Value Problem (IVP), v’ = f(t,v), y(to) = yo, an s-stage Rosenbrock method
is defined as [7]

(11a) Ynt1 = Yn + D1y biki
(11b) k; = hf (tn + azh,yn + 22;11 aijkj) + ’Yz'hQ% (tnsyn) + hJ E;:1 Yiikj

where the number of stages s and the coefficients b;, a;;, and +y;; are chosen to obtain
a desired order of consistency and stability, J = fy(tn,¥yn), @; = Z;;ll o4j, and
v = 2221 v;j- For reasons of computational efficiency the coefficients ;; are identical
for all stages; i.e., y;; =y forall i =1,...,s. Note that formally a;; =0, 1 <i<s.

For the purpose of error control in the the generic Rosenbrock method a second
approximation of the solution at the current time step is used to produce an estimate
of the local error. This second approximation ¢,41 is usually of lower order and it
recycles the stage values k; of Eq.(11b), but this time employing a different set of
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coefficients b;,

(12) Gnt1 = Yn+ ) biki

i=1

The approximation |y,+1 — Jnt1| of the local error depends on the size of the
integration step-size, and the latter is increased or decreased to keep the local error
right below a user prescribed absolute and/or relative tolerance. Thus, for the vector
case y € R™, at time step n + 1 the error in component i is kept smaller than a
composite error tolerance sc;

(13) |y2+1 - Zj12'1+1| < sc¢;, sc; = Atol; + max(|yfz|a |y;+1|) - Rtol;

where Atol; and Rtol; are the user prescribed absolute and relative integration toler-
ances for component i. The value

. . 1/2
1 ¢ Wpr1 = Gnrn)?
(].4) err = (E Z T

i=1

is considered as a measure of local error. If the order of the proper and embedded
formulas used is p and P respectively, asymptotically err ~ Ch?t!, where C is a
constant dependening on the choice of formulas and ¢ = min(p, p). Optimally, err =1

and therefore 1 ~ Chg;rtl. The optimal step-size is computed then as

N
(15) gt = h (—)

err

A safety factor fac multiplies h,y¢ to decrease the chance of a costly rejected step-size,
which happens whenever err > 1. Further, the step-size is not allowed to increase or
decrease too fast. This is achieved by two control parameters facmin and facmaz,

(16) Pnew = hmin (facma:c,ma,x (facmz‘n, fac- (1/err)1/(q+1)))

To apply a generic Rosenbrock formula for the solution of the SSODE of Multi-
body Dynamics of Eq.(9), first notice that since M is positive definite, by multiplying
from the left with Mi—L, the second order SSODE of Eq.(9) theoretically can be locally
reduced to the form

(17a) y"' = f(t,y,y")

Note that for the purpose of introducing the Rosenbrock-Nystrom approach and with-
out any loss of generality in the formula above the vector v was replaced with a scalar
quantity y. As the interest is only in determining the coefficients of the Rosenbrock-
Nystrom method, the fact that this formula is used to find a scalar or vector numerical
solution of an ODE problem is irrelevant.

The previous second order system of ODE is transformed into a standard first
order ODE problem,

(17b) [ 5 ]I - [ f(t,l;/,,y’) ]
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Applying the generic method of Egs.(11a— 11b) to this first order ODE system yields

(18a) [y7+1] [ZZ]Jrgbz[]Z] ;

yn+1
(18b) [ ki ] _ yn+2] 1iil;
¢ f(t +ahyn+2 1041] g,yn+z 1a13 )
0
b [ Y (t, Y ) ]

0 I kj
+h[J1 J2:|Z’Y”|:€j7:| >

j=1

where
of of
(19) Ji = a—y(tn,yn,y;) and  Jo = a—y,(tmyn,y;) :

In order to obtain a numerical method to directly integrate Eq.(17a), the “y-stages”
k; are eliminated to express the formula only in terms of the “y’-stages” ¢;. Defining
Bij = aij + 7ij, the first row of (18b) is

(2
(20) ki:hy;l-i'hz,@)ijfj, 1=1,...,8
j=1
In the second row of Eq.(18b), the sum 23_11 a;jk; comes in as the second argument

of f(-,-,-). Defining &;; = Z’ ! ; QimPmj and using Eq.(20) and the summation
interchange procedure, this sum is expressed in terms of ¢; as

i—1 i—1 J
Z Qij k‘j = Z Qij (hy; +h Z ,Bjmfm>
j=1 j=1 m=1

i—1 J
= hay,+h) > Bimbm
j=1m=1
i—1 i—1
m=1 j=m
i—1
= hal-y; +h Z 5@']'5]'
j=1

With the above substitution, the second row of Eq.(18b) becomes

i—1 i—1
21) & = hf | te+aihye +hayl + B 0ty vl + Y il
Jj=1 Jj=1

0

+hdy Y vigki +hde Y it

=1 =1
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Defining 6;; = E:n: y YimBmj and substituting the whole sum in &’s by a sum in
s

D vk = hvyn+h)6it
j=1

=1

Eq.(21) becomes the stage relation

i—1 i—1
(22) G = hf|tn+aihyn +haiy, + 0 6l v+ > aijl;
j=1 j=1

5 [0
+yih? (6—f(tn,ymy;) + le$>
t
+h2J1 Z 0;i0; + hJ> Z fyijéj
j=1 j=1

(From a computational point of view Eq.(22) has the following interpretation: at
stage i (1 <1 < s) the quantity #; is to be found as the solution of a linear system

Sil; = RHS
where S; = I — vy JJo —h20;.J,. Since ay; = 0, 1 <4 < s, it follows that 0;; = 74 8: =
7vii (o +7ii) = v2. Thus, the linear systems to be solved at each stage have the same
matrix,

Si=8=1—-hyJ, —h*y2J,

Substituting k’s by £’s in Eq.(18a) and denoting p; = Z;:i b;B;ji leads to

(23a) Untt = Un+hyh+hY pils
i=1
(23b) Ynii = Un+ Z bil;
=1

Using matrix notation for the coefficients (e.g., (o;;) is the matrix whose entries are
the a-coefficients of the method) 4,6, and p are expressed as

(6i5) = (uj) - (Big) > (Biz) = (vig) - (Big) 5 (i) = (bs) - (Bi) -

To summarize, the following linearly implicit method for the second order system
(17a) is defined:

(24&) Yn+1 = Yn + hy;z + h Z /J/zez

=1

(24b) Yns1 = Yn+ Z bil;
=1
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i—1
(24c) Y; = yn+hoyy,+h Z dijl;
j=1
i—1
(24d) Y] = g+ il
(246) g, = hf (tn + a,-h, Y;', Y;I)

0
+7;h* (6{( s Yns Yn) + len>

+h2J1 Z Gijﬁj + hJs Z%jﬁj

j=1 j=1

It can be seen in Eq.(22) that matrix-vector multiplications are needed. Because
of the presence of both J; and Jy, the classical transformation removes only the
multiplications with one of the J’s. Substituting z; = }7_, 7i;¢; into the method,
Eqgs.(24a—24e) leads to the following.

THEOREM 2.1. Let (as5), (vij), (bi), and (b;), be the coefficients of an s-stage
embedded Rosenbrock method given by Egs.(11a—11b). The associated Rosenbrock-
Nystrom method is defined as

L L
(252) Yy = Yn+hyn +hY pizi s Gotr =Yn +hyn +h) iz
i=1 i=1
El El
(25b) Ynt1 = Yn+ Zmizi s U1 = Un + Zmizi
i=1 3
i—1
(25¢) Yi = yn+hawy, + hz 05z
j=1
1
(25d) YZ = :ULL + Zaiij
(25e) S = I—hyJy—h2y20,
0
(25f) S-zi = hyf (t + a;h, YnYz) + hQ’Y% (6f( n;ynayn) + len)
i—1 i—1
+7y Z CijZ5 + hz’le Z (5,']'2’]'
j=1 j=1

where the new coefficients are

(aij) = () ()"

(cij) = v 'T—(y)~"

i) = (wij)+ (vig) - (ai) - (vi) ™"
0:5) = (o) + (2ij)” - (i)™
(mi) = (b '(%’J)_l

(o) = (b))
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(i) = (ba) + (b) - (i) - (i)~
() = gi) + (ih) () - (%’j)fl
(1) = @y 1) ()"

(@) = (1,...,1) - (a;))"

Proof. By direct substitution. O
Note that in Egs.(25a) and (25b), values for a second, and typically lower or-
der, approximation is provided at time t,; for both the solution ¢,1 and its first

derivative §;,, ;. These values are used for step-size control, as indicated in Egs.(12)
through (16).

3. Providing analytical integration Jacobians. A successful implementa-
tion of the Rosenbrock family of formulas introduced above depends upon the ability
to provide exact derivative information. Equation (19) indicates the derivatives that
must be computed. The numerical solution of a dynamic analysis problem carried out
in the proposed framework of a Rosenbrock implicit integrator requires exact com-
putation of the derivatives of independent acceleration with respect to independent
positions and velocities,

(26) Ji=vVy, J2=vy .
To obtain these derivatives, first differentiating Eq.(7a) with respect to v yields

(27) MYWI; + (M), + (MYY¥) uy + MY, + (M), + (MY i) uy
+O7N, + (®IN) 4+ (®0N), uv = Q¥ + QYuy + QY

The partial differential notation is explained in the Appendix. The quantities uy,
iy, Uy, and Ay are obtained by taking partials with respect to v of Eqs.(7c), (7d),
(7e), and (7b), respectively. This is an exercise in chain rule differentiation that yields
[10, 11]

(28a) u, =-&;'¢,=H

(28b) iy = —®;' [(Bq4), + (2qa) H| =7
(28¢) i, =HJ; +L

(28d) Ay = =&, 7[R+ (M™Y + M""H) J4]
where

(29) = ‘I>;1 [[Tu - (cbqfl)u] H+r +71ad - (éq(.I)v] ,

L
300 R = [(®IN),+M"4),-QiH-QI-QiJ
+(®LA), + (MUq), + ML, with M" = [M",M"] .
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Substituting the expressions for uy, iy, iy, and Ay into Eq.(28) and denoting
MY = [MYY,MY"] yields

(BHMI, = QU+QYH+QYI
[MYL+ H'R + (87 )) H+ (®7)), + (MYG), + (M"§),H]

According to Lemma, 1.1, the coefficient matrix in this multiple right side linear system
is positive definite. Therefore, Eq.(32) properly defines the derivative J;.

Computation of Jo = Vv, follows the steps taken for the computation of J;. Taking
the derivative of Eq.(7a) with respect to v yields

(32) MYV, + MY, + 7\ = QY + QY

All derivatives in this expression are available, except the quantities Jo, 11y, iy, and
Ay- The last three derivatives are obtained by taking partial derivatives with respect
to the independent velocity v of Egs.(7d), (7e), and (7b). By repeatedly applying the
chain rule of differentiation these derivatives are obtained as

(33a) u, = H

(33b) iy = N + HJ,

(33¢) Ay = @77 [QUH + Q¥ — MYUN — (MY 4+ MY"H) J,]
where

(34) N=&_!'(rgH+7)

Substituting these results into Eq.(32), the derivative of independent accelerations
with respect to independent velocities is obtained as the solution of the multiple right
side system of linear equations,

(35) MJ, =W - HTX
where
W = QH+Q!-M"N,
X = —(QIH+QY-M™N).

With M positive definite, Eq.(35) properly defines the derivative Js.

A general framework is provided in this Section to analytically express the inte-
gration Jacobian required by the Rosenbrock family of integration formulas. Although
rather involved in form, these derivatives are obtained in a straightforward way. Fur-
thermore, they are generic, in the sense that they apply to any mechanical system
simulation. It remains to provide all the ingredients that explicitly or implicitly en-
ter the right side of Eqs.(32) and (35). These derivatives change according to the
modeling elements used to represent a mechanical system. What makes the approach
viable is the fact that even these derivatives can be generated in a completely generic
way. This is solely a mechanical system modeling task that hinges upon the fact
that, in multibody dynamics, all modeling elements are broken down into primitives.
Providing required derivative information for these primitives in Cartesian coordi-
nates is tractable. Derivative information for primitives is then combined to produce
derivatives for complex modeling entities. To illustrate this, consider the joints used
to connect bodies in a mechanical system model. The vast majority of them can be
obtained starting from four simple constraint primitives [9]:



Rosenbrock-Nystrom Methods for Multibody Dynamics 11

&7 Dot-1 constraint primitive, imposes that two body-fixed non-zero vectors a;
and a; belonging to bodies ¢ and j respectively, should be perpendicular at
all times; i.e., % (a;,a;) = a;Ta; =0

®7? Dot-2 constraint primitive, imposes that one body-fixed vector a; and a
vector d;; defined by two body-fixed points P; and P; should be perpendicular
at all times; i.e., P2 (ai,dij) = adeij =0

®° Point Constraint Primitive, imposes that two body-fixed points P; and P;
belonging to bodies ¢ and j respectively, should coincide at all times; i.e.,
@S (.P,,PJ) = P,' = P]‘

®%st Distance Constraint Primitive, imposes that the distance between two
body-fixed points F; and P; belonging to bodies ¢ and j should stay constant
and equal to C' > 0 at all times; i.e., ®4¢ (P, P;,C) = dist (P;,P;) = C

In this context, a universal joint that allows two relative degrees of freedom between
the constrained bodies is defined by requiring that a Dot-1 and a Point Constraint
Primitive be simultaneously satisfied throughout the simulation. Likewise, a spherical
joint that allows three degrees of freedom (rotational) between the constrained bodies
is simply a Point Constraint Primitive, while a revolute joint is the assembly of two
Dot-1 and one Point Constraint primitives.

Analyzing the order of derivatives used to compute the required derivative infor-
mation J; and J2, it can be seen that the highest order is 3, and it appears as a result
of taking partials of the right side of the acceleration kinematic constraint equation.
Consequently, derivatives of the four constraint primitives introduced above should
be implemented up to order 3. Deriving and coding expressions for all derivatives
for the modeling primitives up to order 3 is a one time effort. For details about how
these derivatives are obtained for constraint primitive, inertia elements, and forces
the interested reader is reffered to [16]. For the scope of the present paper, it suf-
fices to assume that the derivatives required to analytically compute the Rosenbrock
integration Jacobian are readily available.

4. Proposed algorithm. For multibody dynamic analysis problems, a low to
medium accuracy method with very good stability properties is desirable. Formulas
with few function and Jacobian evaluations are favored, since obtaining accelerations
and the integration Jacobian are costly operations. A method that is L-stable allows
for robust integration of very stiff problems, which enables efficient handling of bush-
ing elements and flexible components used in modeling mechanical systems. In this
context the focus is on a L-stable order 4 Rosenbrock-Nystrom method with 4 stages.
This allows for room in determining a second set of coefficients that efficiently provide
an order 3 embedded formula for step-size control. Furthermore, following an idea of
[7], the number of function evaluations for the 4 stage method is kept to 3; i.e., one
function evaluation is saved. In terms of function evaluations, this makes the proposed
Rosenbrock-Nystrom method competitive with the trapezoidal method, whenever the
latter requires 3 or more iterations for convergence. Moreover, the trapezoidal method
is of order 2 and only weakly A-stable.

With g} = Z;;ll Bij, the defining coefficients a;j, 7i;, and b; of an order 4 Rosen-
brock method of Egs.(11a— 11b) are subject to the following order conditions [7]:

(36a) b1 +by+bs+by=1
(36b) bafBy + b3fs +bafly = 1/2 — v
(36¢) boa + bzaj + bsai = 1/3
(36d) bsB32/35 + ba (Ba2 By + BasBh) = 1/6 — v ++°
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(36e) boas + bzaj + bsal = 1/4
(361) b3azass By + bacu (afy + auzfs) = 1/8 — /3
(36g) bsB3205 + ba (Ba2as + Bases) = 1/12— /3
(36h) baf43B3205 = 1/24 —7/2 4+ 1.57* —

The stage values k; of the order 4 method are recycled, for the purpose of au-
tomatic step-size control, to provide an embedded formula of order 3 of the form
71 =Yo+ Zle Biki. The order conditions for the order 3 algorithm are as indicated
as Eqgs.(36a— 36d). These conditions lead to the system

111 1 by 1
0 a3 o aj b 1/3
0 0 P32y Pazfs+ BasBs by 1/6 — vy ++2

If the coefficient matrix in Eq.(37) is non-singular, uniqueness of the solution of this
linear system implies b; = bi. To prevent this, one additional condition is considered
to obtain a distinct order 3 embedded formula. It requires the coefficient matrix in
Eq.(37) to be singular, which results in the condition

(38) Baa B (Byai — Bhad) = (Bhai — Bya3)(Baz By + BasBs)

The number of coefficients that must be determined is 17; the diagonal coefficient +,
six coeflicients v;;, six coefficients a;;, and four weights b;. The number of conditions
that these coefficients have to satisfy is nine. There are eight degrees of freedom in
the choice of coeflicients and some of these are used to construct a method with one
less function evaluation. Thus, if

Q41 = 031
(39) g2 = Qs
Q43 = 0

stage 4 of the algorithm saves one function evaluation. Finally, the free parameters can
be determined such that several order 5 conditions of the otherwise order 4 proposed
formula are satisfied. When the conditions of Eq.(39) hold, one of the nine order 5
conditions associated with a Rosenbrock type formula leads to

1/5—ay/4

(40) a3 = m

A second order 5 condition is satisfied by imposing the condition
(41) bsBazai(az — ) = 1/20 — v/4 — az (1/12 — v/3)
Next, two conditions are chosen as

b3 = 0

(42) ay = 2y

to make the task of finding the defining coeflicients «;;, 7i;, and b; more tractable.
Finally, the last condition regards the choice of the diagonal element . The value



Rosenbrock-Nystrom Methods for Multibody Dynamics 13

of this parameter determines the stability properties of the Rosenbrock method. In
this context, the diagonal entry of the Rosenbrock formula is suggested in [7] as
v = 0.57281606, which is adopted for the proposed algorithm. With this, there is a
set of 17 equations, some of them non-linear, in 17 unknowns. The solution of this
system, accurate up to 25 digits, is provided below, along with the coefficients b; of
the order 3 embedded formula.

v = 0.57281606
Q. = 1.14563212 Y21 = 2.341993127112013949170520
aszr = 0.520920789130629029328516 v31 = —0.027333746543489836196505
azz = 0.134294186842504800149232 Y32 = 0.213811650836699689867472
ag = 0.520920789130629029328516 va1 = —0.259083837785510222112641
ase = 0.134294186842504800149232 va2 = —0.190595807732311751616358
Q43 = 0.0 vaz = —0.228031035973133829477744
bi = 0.324534707891734513474196 by = 0.520920789130629029328516
by = 0.049086544787523308684633 by = 0.144549714665364599584681
bz = 0.0 by = 0.124559686414702049774897
bs = 0.626378747320742177841171 by = 0.209969809789304321311906

Once the coefficients of the underlying Rosenbrock formula are available, the
coefficients of the Rosenbrock-Nystrom formula defined in Theorem 2.1 are easily
computed. The full set of coefficients for the order 4, L-stable formula is provided
below.

0 = 1.14563212 asn = 0.20000000000000000000000
031 = 0.789509162815638629626980 as1 = 1.86794814949823713234476
032 = 0.134294186842504800149232 azzs = 0.23444556851723885002322
0y = 0.789509162815638629626980 as1 = 1.86794814949823713234476
O = 0.134294186842504800149232 asgy = 0.23444556851723885002322
943 = 0.0 a43 = 0.0
co1 = —7.137649943349979830369260 g1 = —1.196361007112013949170520
c31 = 2.580923666509657714488050 031 = 1.470280254409780714633870
32 = 0.651629887302032023387417 032 = 0.348105837679204490016704
ca1 = —2.137115266506619116806370 da1 = 0.003765094355556165798974
caa = —0.321469531339951070769241 ds2 = —0.109762486758103255675398
cas = —0.694966049282445225157329 043 = —0.228031035973133829477744
mp = 2.255566228604565243728840 m = 2.068399160527583734258670
my = 0.287055063194157607662630 me = 0.238681352067532797956493
ms = 0.435311963379983213402707 ms = 0.363373345435391708261747
myg = 1.093507656403247803214820 ms = 0.366557127936155144309163
pr = 1.592750819409585342074900 po= 1.434903971848209472627100
p2 = 0.195938266310250609693329 p2 = 0.222978672588698369045153
p3 = 0.0 ps = 0.124559686414702049774897
pa = 0.626378747320742177841171 pa = 0.209969809789304321311906
v2 = —1.769177067112013949170520 ay = 1.145632120
v3 = 0.759293964293209853670967 az = 0.655214975973133829477748
v4 = —0.104894621490955803206743 as = 0.655214975973133829477748

It should be recalled that any Rosenbrock type formula requires an exact Jacobian
for the numerical solution to maintain its stability and accuracy properties. Sometimes
this might be a very challenging requirement. Consider for example the situation
when complex tire models are present in a model, or for a general purpose solver the
case when user defined external routines are employed for the computation of active
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forces such as aerodynamic forces. Providing an exact Jacobian for these situations
is very unlikely. Verwer et al. 1997, proposed a second order W-method [8], which
is a Rosenbrock type method in the sense that it does not necessitate the solution
of a non-linear system, but which does not require an exact Jacobian. The defining
coeflicients for this method are provided in the table below.

v = 1.70710678118650
a = 0.00000000000000 Moo= 1.70710678118650
ay = 1.00000000000000 v2 = —1.70710678118650
a1 = 0.58578643762690 c21 = —1.17157287525380
duu = 1.70710678118650 d22 = 1.70710678118650
21 = —2.41421356237310
01 = 1.00000000000000
mi = 0.87867965644040 m1 = 1.17157287525380
my = 0.29289321881340 my = 0.58578643762690
pr = 0.79289321881340 = 0.58578643762690
p2 = 0.50000000000000 fi2 = 1.00000000000000

This paper is concerned with the implementation of a Rosenbrock-Nystrom based
method. Algorithm 1 based on the 4 stage, order 4 L-stable Rosenbrock formula
introduced is presented below. The W-method can be similarly implemented by re-
placing the corresponding coefficients of the Rosenbrock-Nystrom formula with the
coeflicients provided in the previous table. Details of this implementation and the
performance of such a method are not the presented here.

Algorithm 1
1.  Initialize Simulation
2. Set Integration Tolerance
3. While (time < time-end) do
4. Set Macro-step
5. Get Integration Jacobian
6. Factor Integration Jacobian
7. Get Time Derivative
8. Resolve Stage 1
9. Resolve Stage 2
10. Resolve Stage 3
11 Resolve Stage 4
12. Get Solution. Check Accuracy. Determine New Step-size
13. Recover Dependent Generalized Coordinates
14. Check Partition
15. End do

Step 1 initializes the simulation. Based on user provided values at time tg, a
consistent set of initial conditions (ug, vg, g, Vo); i.e., satisfying Eqgs.(7c) and (7d),
is determined and simulation starting and ending times are defined. User defined
integration tolerances Atol;, and Rtol; of Eq.(13) are read in and set during Step 2.
These tolerances are used to control error in both independent position v and velocity
v. Step 4 backs up the system configuration to be used upon a rejected time step.
During Step 5, the integration Jacobian is evaluated. Since obtaining J; and J; is a
costly operation, Eqgs.(32) and (35) suggest that z; is more efficiently computed if the
stage linear system of Eq.(25f) is replaced with an equivalent one obtained by formally
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multiplying the original linear system with the positive definite matrix (1/ 'y)ﬁ The
new linear system assumes the form

(43) HZ,‘ =T;

where, with M and Q defined in Eqs.(10a) and (10b),

(44) H:%ﬁ-S:%ﬁ—gﬁJz—WﬁJl
h A : Vi (< OV e
#5) r = -Q (tn+a,-h,Vz-,Vz-) 128 (MG, (v, ¥) + M
1. il Rz il
+—MZC,'J‘Z]' + —MJ; Z(S,’jzj'
v g g =

Thus, the linear systems in Eqgs.(32) and (35) need not be solved for J; and J». Finding
only the right side of these two linear systems suffices to compute the coefficient matrix
IT and right side r; at each integration stage. In [12] it is showed that the matrix
IT of Eq.(43)is the integration Jacobian that also appears in the context of multistep
implicit integration of the DAE of multibody dynamics. This observation allows for a
unitary implementation of implicit methods, based on either singly diagonal implicit
Runge-Kutta formulas or on multistep BDF-type formulas.

The matrix II is factored during Step 6. The dimension of this matrix is equal
to the number of degrees of freedom of the mechanical system model, and is typically
small. Consequently, here and for that matter everywhere else the proposed algorithm
uses LAPACK and level 1 and 2 BLAS dense linear algebra routines [1].

During Step 7, the quantity 1/\\/[60/6t needed to compute the stage right side
r; is evaluated in the consistent configuration (u,,v,,,,v,) from the beginning of
each macro-step. As the position kinematic constraints in Eq.(2a) are assumed time

independent, M does not depended on time. Therefore, using Eq.(9) and Eq.(10b),

1\//\[8%'7 0 ~

(t7 Vn, ‘.’n) = QZ + HTQ?

The simplifying assumptions made in computing Mov /0t in Eq.(46) are that the kine-
matic constraint equations are time independent and holonomic. The first assumption
is to quantitatively simplify the presentation. Otherwise, the algorithm would step
by step follow the derivation for the time independent case, with the caveat that
terms of the form ®;, ®,¢, Py, etc., would have to be accounted for. As a result,
all derivatives would be more complicated. The second assumption is made because
covering the non-holonomic constraint case is a qualitatively different process, which
is not targeted by this paper. For a thorough account of the non-holonomic scenario,
the reader is referred to [15]. Finally, note that in the case of scleronomic mechanical
systems, ﬁ(’)\'}/at =0.

The next four steps compute the stage variables z; of Eq.(25f). During each of
the four stages of the Rosenbrock-Nystrom algorithm, some or all of the following
steps are taken:

a) Obtain consistent configuration at position and velocity levels.
b) Compute stage generalized forces Qz
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c) Compute stage right side r; as in Eq.(46)

d) Solve stage linear system of Eq.(43) to obtain z;
With regard to sub-step (a)according to Eq.(25c), defining V; = v, + ha;v,, +
h Z;;ll 6:;z;, the stage dependent generalized coordinates U’ are the solution of the
non-linear system ®(U% V¢) = 0. The matrix ®,, along with its factorization, are
at the cornerstone of the algorithm, and Eq.(5) guarantees that U? is properly de-
fined. Likewise, denoting the stage independent velocities as Vi = v, + 3°_ j= L iz,

the stage dependent velocities U; are, as in Eq.(25d), the solution of the linear sys-
tem ®,(UY, VHU! = —®, (U, V) Vi, Finally, note that the stage forces Q; =
Q (t + a;h VZ,V) are computed during sub-step (b), as in Eq.(10b), using the

factorization of the matrix ®,,(U?, V?) available at the end of sub-step (a).

Due to the particular choice of coefficients defining the Rosenbrock-Nystrom for-
mula and the way in which the code was implemented, each of the four stages has its
own particularities. Thus,

e Stage 1;i.e., Step 8 of the algorithm, marks the beginning of a new integration
step, or equivalently the end of the prior one. Therefore the system is in
an assembled configuration and sub-step (a) above is skipped. During this
stage, the matrix IT of Eq.(43) is evaluated, and generalized accelerations
are obtained as a by product of the process. Thus, to obtain II, the matrix
M is computed and the dependent constraint sub-Jacobian @, is factored.
The latter is then used to obtain the matrices H, J, L, and N of Section 3.
Notice that, due to the choice of a constant diagonal element v for the original
Rosenbrock method, the matrix IT is constant and needs to be factored only
once. The remaining 3 stages reuse this factorization.

e Stages 2 and 3 of the Rosenbrock-Nystrom formula follow exactly the sub-
steps (a) through (d) outlined above.

e Stage 4; i.e., Step 11, bypasses the stage generalized force computation of Q,
in Eq.(46), because of the special choice of formula coefficients (see Eq.(39)).
Since no force computation is required, there is no need to provide consistent
position and velocity configurations, consequently sub-step (a) is skipped. It
remains to compute the right side ry and, with the coefficient matrix already
factored to do a forward/backward substitution, to obtain z4.

During Step 12, the position level independent generalized coordinates at time-
step n + 1 are computed according to Eq.(25a) as Vyq1 = Vo + AV + B Y0 piZi.
Likewise, according to Eq.(25b), the velocity level independent generalized coordinates
are computed as Vp41 = V4> _._; b;z;. The accuracy of the solution is verified using
a second approximation of the solution at time n + 1. The less accurate solution is
pr0v1ded by the embedded order 3 formula V,41 = v, + hv, + Y ., fi;2; and
vn+1 =Vp+di, biz;, and it is used in Eqs. (14) and (16) for the purpose of step-size
control.

Step 13 computes dependent position level generalized coordinates w41 such
that they satisfy ||®(unt1,Vnt1)||oo < tol. Dependent velocities are obtained as the
solution of the linear system ®yu(uni1,Vat1)lntr = —Byv(Upt1,Vpt1)Vay1. Note
that at the end of this step a factorization of the dependent constraint sub-Jacobian
P, (unt1,Vny1) is available, since it was used to compute the dependent generalized
positions.

Along with the factorization of the dependent constraint sub-Jacobian, its condition
number is monitored and it is used during Step 14 of the algorithm to check the
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partitioning of the generalized coordinates. The current partitioning is reused as
long as the condition number of the current dependent constraint sub-Jacobian does
not exceed by 25% the value of the condition number produced by the most recent
partitioning. This value was determined after carrying out numerical experiments
with different values.

5. Numerical Experiments. A set of numerical experiments is first carried out
to validate the proposed algorithm. Then a comparison with an explicit integrator is
performed to assess the efficiency of the proposed algorithm for numerical integration
of a larger stiff mechanical system.

5.1. Validation of Proposed Algorithm. Validation is carried out using the
double pendulum mechanism shown in Fig.1. Stiffness is induced by means of two
rotational spring-damper-actuators (RSDA). The masses of the two pendulums are
m1; = 3 and ms = 0.3, the dimension of the pendulums are L1 = 1 and Ly, = 1.5,
the stiffness coefficients are k; = 400 and ks = 3.E5, and the damping coefficients are
Ci =15 and Cy = 5.F4. All units are SI. Note that the zero-tension angles for the two
RSDA elements are af = 37/2 and a9 = 0. In its initial configuration, the two degree
of freedom dynamic system has a dominant eigenvalue with a small imaginary part
and a real part of the order -10E5. Since the two pendulums are connected through
two parallel revolute joints the problem is planar. In terms of initial conditions, the
centers of mass (CM) of bodies 1 and 2 are located at z{™ = 1, &M = 0, and
r§M = 3.4488887, y§'M = —0.388228. In the initial configuration, the centroidal
principal reference frame of body 1 is parallel with the global reference frame, while
the centroidal principal reference frame of body 2 is rotated with 62 = 237 /12 around
an axis perpendicular on the plane of motion. For body 1, " = 5™ = o¢M =0,
while for body 2, 2§M = 3.8822857, y§M = 14.4888887, and #SM = 10. Note that
all initial conditions are in SI units and are consistent with the kinematic constraint
equations at position and velocity levels (Egs.(2a) and (2b)).

The first set of numerical experiments focuses on assessing the reliability of the
step size control mechanism. The goal is to verify that user imposed levels of absolute
and relative error are met by the simulation results. For this, a so called reference sim-
ulation is first run using a very small constant integration step-size. Other simulations,
run with different combinations of absolute and relative tolerances, are compared to
the reference simulation to find the infinity norm of the error, the time at which this
largest error occurred, and average error per time step. In this context, suppose that
n time steps are taken during the current simulation and that the variable whose
accuracy is analyzed is denoted by e. The grid points of the current simulation are
denoted by tini = t1 < t2 < ... <ty = teng- If N is the number of time steps taken
during the reference simulation; ie., Tiny = T1 < To < ... < Tn = Tepng, assume
that for the quantity of interest the computed reference values are Ej;, for 1 < j < N.
For each 1 <4 < n, an integer r(i) is defined such that Ty;) < t; < Ty(j)41. Using
the reference values Ep(;)—1, Er(i), Er(i)+1, and FEy(;)42, spline cubic interpolation is
used to generate an interpolated value Ef at time ¢;. If r(i) — 1 < 0, the first four
reference points are considered for interpolation, while if r(¢) + 2 > N, the last four
reference points are used for interpolation. The error at time step ¢ is then defined as
A; =| E} — ej. For each tolerance set k, accuracy is measured by both the maximum

(A®) and the average (Z(k)) trajectory errors, as well as by the percentage relative
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Body 2
(Xz’ Y 62)

Fi1Gc. 1. Double pendulum problem

error

(k)

2 RelEr{%)] = AE—* % 100,

Simulations are run for tolerances between 1072 and 107°, a range that typically
covers mechanical engineering accuracy requirements. The length of the simulation
is 2 seconds. The time variation of the angle 6, is presented on the left of Fig.2.
Notice that body 1 eventually stabilizes in the configuration §; = 37 /2, which is the
zero-tension angle for the RSDA.

Table 1 contains error analysis information for angle 6;. The first column contains
the value of the tolerance with which the simulation is run. Relative and absolute
tolerances (Rtol; and Atol; of Eqs.(13)) are set to 10*, and they are applied for
both position and velocity error control. The second column contains the time ¢*
at which the largest error A®*) occurred. The third column contains the values of
A®) | Column four contains the relative error, and the last column shows the average
trajectory error.

The most relevant information for step-size control validation is A®). If, for
example, k = —3; i.e., accuracy of the order 1073 is demanded, A(=3) should have this
order of magnitude. It can be seen from the results in Table 1 that this is the case for
all tolerances. Notice that these results are obtained with a non-zero relative tolerance.
According to Eq.(13), depending on the magnitude of the variable being analyzed, the
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Fi1a. 2. Time Variation of orientation 61 (Left) and of angular velocity 61 (Right) for Body 1.

relative tolerance loosens or tightens the step-size control. Based on results shown
on the left of Fig.2, the relative tolerance is multiplied by a value that oscillates
between 4.0 and 6.0. Consequently, the actual upper bound of accuracy imposed on
6, fluctuates and reaches values up to 7-10~*. Thus, the step-size controller is slightly
conservative. For an explanation of this stiffness induced order reduction, the reader
is referred to [7]. To remedy this, in [18], a scaling of the truncation error that enters
in Eq.(13) the computation of the new step-size is recommended. In this context,
the quantity (91 — y1) is replaced by the scaled value § = (I — hydf/0y)~! (41 — y1)-
This step-size control strategy remains to be investigated.

TABLE 1
Position Error Analysis for the Double Pendulum Problem.

(x| A® | RrerErriy1 | AW
-2 || 0.592127 | 5.223e-2 0.12126 3.234e-3
-3 || 0.599954 | 4.198e-3 0.00964 2.631e-4
-4 || 0.626135 | 4.916e-4 0.00108 2.946e-5
-5 | 1.065146 | 1.902e-5 0.00039 9.868e-6

TABLE 2

Velocity Error Analysis for the Double Pendulum Problem.

x| ¢ | A®  J[RelErr[%] | A®
-2 ][ 0.795548 | 4.061e-2 | 1.84434 | 2.348e-2
-3 [ 0.373114 | 3.792e-3 | 0.12340 | 2.181le-3
-4 | 0.217757 | 8.652e-4 | 0.00922 | 3.445e-4
-5 || 0.186183 | 2.343e-4 | 0.00246 | 9.357e-5

Error analysis is also performed at the velocity level. The time variation of angular
velocity 61 is shown on the right of Fig.2. The angular velocity of body 1 fluctuates
between -10 and 7 rad/s. As a result, values of A(*) of up to the order 10¥*+! are
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considered very good. Error analysis results for 6, are presented in Table 2. The
step-size controller performs well, slightly on the conservative side.

The error analysis results presented suggest that the step-size controller employed
is reliable. The step-size control mechanism used indicates that using an embedded
formula for local error estimation is suitable, since for the test problem considered
accuracy requirements are met or exceeded by the numerical results. In order to
avoid unjustified CPU penalties, the algorithm may be improved for extremely stiff
mechanical systems by adopting the step-size controller proposed in [18].

5.2. Performance Comparison with Explicit Integrator. In order to com-
pare the performance of the proposed implicit algorithm with a state of the art SSODE
explicit integrator, a model of the US Army High Mobility Multipurpose Wheeled Ve-
hicle (HMMWYV) is considered for dynamic analysis. The HMMWYV shown in Fig.3 is
modeled using 14 bodies, as shown in Fig.4. In this figure, vertices represent bodies,
while edges represent joints connecting the bodies of the system. Thus, vertex number
1 is the chassis, 2 and 5 are the right and left front upper control arms, 3 and 6 are
the right and left front lower control arms, 9 and 12 are the right and left rear lower
control arms, and 8 and 11 are the right and left rear upper control arms. Bodies
4,7, 10, and 13 are the wheel spindles, and body 14 is the steering rack. Spherical
joints are denoted by S, revolute joints by R, distance constraints by D, and transla-
tional joints by T. This set of joints imposes 79 constraint equations. One additional
constraint equation is imposed on the steering system, such that the steering angle is
zero; i.e., the vehicle drives straight. A total of 98 generalized coordinates are used
to model the vehicle, which renders 18 degrees of freedom to the model.

Stiffness is induced in the model through means of four translational spring-
damper actuators (TSDA). These TSDAs act between the front/rear and right/left
upper control arms and the chassis. The stiffness coefficient of each TSDA is 2EQ7
N/m, while the damping coefficient is 2E06N - s/m. For the purpose of this numerical
experiment, the tires of the vehicle are modeled as vertical TSDA elements with
stiffness coefficient 296325 N/m and damping coefficient 3502N - s/m. Finally, the
dominant eigenvalue of the corresponding SSODE of Eq.(9) has a real component of
approximately —2.6E5, and a small imaginary part.

Dynamic analysis of the model is carried out for the vehicle driving straight at
10mph over a bump. The shape of the bump is a half-cylinder of diameter 0.1m.
Figure 4 shows the time variation of the vehicle chassis height. The front wheels hit
the bump at time 0.5 seconds, and the rear wheels hit the bump at time 1.2 seconds.
The length of the simulation in this plot is 5 seconds. Toward the end of the simulation
(after 4 seconds), due to over-damping the, chassis height stabilizes at approximately

The test problem is first run with an explicit integrator based on the code DEABM
of Shampine and Watts [18]. Algorithm 2 outlines the explicit integration approach
used for SSODE integration of the equations of motion for the HMMWYV model.
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Fic. 3. HMMWV

Fi1G. 4. HMMWYV model representation
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Algorithm 2
Initialize Simulation
Set Integration Tolerance
While (time < time-end) do
Get Acceleration
Apply Integration Step.
Check Accuracy. Determine New Step-size
6. Recover Dependent Generalized Coordinates
7. Check Partition
8. End do

The first 3 steps are identical to the ones in Algorithm 1. Step 4 computes the
acceleration §, by solving the linear system of Eq.(3). A topology-based approach
[17], that takes into account the sparsity of the coefficient matrix is used to solve for
the generalized accelerations §. The DDEABM integrator of Shampine and Watts is
then used to integrate for independent velocities v,,, and independent positions v,,.
The integrator is also used to integrate for the dependent coordinates u,,, with the sole
purpose of providing a good starting point during Step 6 for the iterative solver. At
each time step t,, it computes u,, by ensuring that the kinematic position constraint
equations are satisfied; i.e., solving ®(v,,u,) = 0. Likewise, dependent velocities
1, are the solution of the linear system ®,,(u,,v,)u, = —®(u,, v,)V,, which thus
guarantees that the generalized velocities satisfy the kinematic velocity constraint
equations. The dependent/independent partitioning of the generalized coordinates is
checked during Step 7 and with this the algorithm concludes one integration step and
proceeds to the next one.

Timing results reported are obtained on a SGI Onyx computer with an R10000
processor. Computer times required by Algorithm 2 are listed in Table 3. Results
for the Rosenbrock Nystrom algorithm are presented in Table 4.

Ok W =

TABLE 3
Ezxplicit Integrator Timing Results for the HMM WYV Problem.

Tol [[102 [ 10° [ 100" | 10°° ]
1 sec || 3618 [ 3641 [ 3667 [ 3663
2 sec || 7276 | 7348 | 7287 | 7276
3 sec || 10865 | 11122 | 10949 | 10965
4 sec || 14480 | 14771 | 14630 | 14592

TABLE 4
Implicit Integrator Timing Results for the HMMWYV Problem.

Tol [[102]103]107"[107° |
sec | 5.6 | 13.2[40.7 | 172
sec | 12.6 [ 32.6 | 95 | 405
sec | 13 | 36.3 [ 105 | 422
sec || 13.3 37 106 428

DWW -

Results in Table 3 are typical for the situation in which an explicit integrator is
used for the numerical solution of a stiff IVP. For the stiff test problem considered,
the performance limiting factor is stability of the explicit code. For any tolerance in
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the range 1E-2 through 1E-5 and any given simulation length, CPU times are almost
identical. The average explicit integration step-size turns out to be between 1E-5
and 1E-6, and it is not affected by accuracy requirements. The code is compelled
to select very small step-sizes to assure stability of the integration process, and this
is the criteria for step-size selection for a broad spectrum of tolerances. Only when
extremely sever accuracy constraints are imposed on integration, does the step-size
become limited by accuracy considerations. In this context, note that the results
in Table 4 indicate that stability is of no concern for the proposed algorithm, and
solution accuracy solely determines the duration of the simulation. As expected, more
accurate results demand longer CPU times. In this situation, the integration step-
size is automatically adjusted to keep integration error within the prescribed limits.
Figure 5 shows the time variation for the integration step-size when the absolute and
relative errors at position and velocity levels are set to 1072, The y-axis for the step-
size is provided at the right of Fig.5, on a logarithmic scale. In the lower half of the
same figure, relative to the left y-axis is provided the time variation of the chassis
height. Note that when the vehicle hits the bump; i.e., when in Fig.5 the z coordinate
of the chassis increases suddenly, the step-size is simultaneously decreased to preserve
accuracy of the numerical solution. On the other hand, for the region in which the
road becomes flat; i.e., toward the end of the simulation, the integrator is capable of
taking larger integration steps, thus decreasing simulation time.

Chassis Height and Integration Step-Size
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6. Conclusions. A generalized coordinate partitioning based state-space im-
plicit integration method is presented for dynamic analysis of multibody systems.
The method is based on a Rosenbrock type formula with 4 stages that does not re-
quire the solution of a non-linear system for the stage values. The order 4 formula is
L-stable and has an embedded order 3 formula for error control. For a 14 body 18
degree of freedom vehicle, the proposed algorithm is almost two orders of magnitude
faster than an explicit integrator based method. There is room for improvement as far
as the step-size controller is concerned, as it is seen to be conservative when very stiff
models are run under stringent accuracy requirements. The most restrictive condition
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imposed on the user by the Rosenbrock formula employed is the requirement of an
exact integration Jacobian. A formalism is presented for computing the analytical
integration Jacobian required. When providing an exact Jacobian is not possible, a
lower order W-method is suggested as an alternative.
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